EASTERN ARIZONA COLLEGE Elements of Calculus

Course Design 2018-2019

Course Information			
Division	Mathematics		
Course Number	MAT 210/SUN# MAT 2212		
Title	Elements of Calculus		
Credits	4		
Developed by	Ray Orr		
Lecture/Lab Ratio	4 Lecture/0 Lab		
Transfer Status	ASU	NAU	UA
	MAT 210 (3) & Elective Credit (1), Mathematics (MA)	MAT Departmental Electiveand MAT 131; Science & Applied Science [SAS]	MATH 113
Activity Course	No		
CIP Code	27.0101		
Assessment Mode	Final Exam (15 Questions/75 Points)		
Semester Taught	Fall		
GE Category	Mathematics		
Separate Lab	No		
Awareness Course	No		
Intensive Writing Course	No		

Prerequisites

MAT 154 with a grade of "C" or higher or placement test score as established by District policy and ENG 091 with a grade of "C" or higher or reading placement test score as established by District policy

Educational Value

Students Majoring in Business Administration, Computer Information Systems, Pre-Pharmacy, or an AGEC-B.

Description

Differential and integral calculus of elementary functions with applications to business, economics, and the social sciences. Not open to students who have received a grade of "C" or higher in MAT 220.

Supplies

Scientific calculator; TI-83 or TI-84 recommended

Competencies and Performance Standards

1. Utilize derivative functions as instantaneous rates of change.

Learning objectives

What you will learn as you master the competency:

- a. Define the derivative as the instantaneous rate of change at a point.
- b. Visualize the derivative as the slope of the tangent line.
- c. Use the derivative to find where a function is increasing, decreasing or constant.
- d. Interpret the derivative using Leibniz notation.
- e. Use the appropriate units in interpreting derivatives in applications.
- f. Use the second derivative to define concavity of a function.
- g. Perform marginal analysis on economic applications.
- h. Solve equations using logarithms.
- i. Construct and identify polynomial functions.
- j. Model data with various elementary functions.

Performance Standards

You will demonstrate your competence:

- o on assigned activities
- o on written exams
- o on a two hour cumulative final exam

Your performance will be successful when:

- learner demonstrates the ability to visualize derivatives graphically as the slope of the graph
- learner demonstrates the ability to interpret the meaning of first and second derivatives in various applications
- learner explains the concept of marginality

2. Utilize the definite integral as total change.

Learning objectives

What you will learn as you master the competency:

- a. Approximate total change from rate of change.
- b. Estimate the definite integral graphically and numerically.
- c. Use the definite integral to define area.
- d. Use the appropriate units in interpreting definite integrals in applications.
- e. Utilize the connection between derivatives and definite integrals with the Fundamental Theorem of Calculus.

Performance Standards

You will demonstrate your competence:

- o on assigned activities
- o on written exams
- o on a two hour cumulative final exam

Your performance will be successful when:

- o learner explains the definite integral as the limit of Reimann sums
- learner demonstrates the ability to approximate definite integrals graphically and numerically
- o learner demonstrates the ability to interpret the definite integral in various contexts
- learner demonstrates the connection between derivatives and the definite integral using the Fundamental Theorem of Calculus

3. Apply the short cuts of differentiation to formulas of functions.

Learning objectives

What you will learn as you master the competency:

- a. Apply derivative formulas to the elementary functions.
- b. Apply derivative formulas to sums, differences and constant multiples or elementary functions.
- c. Apply the chain rule.
- d. Apply the product and quotient rules.
- e. Find the equations of tangent lines.

Performance Standards

You will demonstrate your competence:

- o on assigned activities
- o on written exams
- o on a two hour cumulative final exam

Your performance will be successful when:

- learner demonstrates the ability to apply the formulas of differentiation to the elementary functions
- learner demonstrates the ability to use the chain, product and quotient rules of differentiation
- o learner demonstrates the ability to determine the equations of tangent lines

4. Use the derivative to solve application problems involving optimization and graphing. *Learning objectives*

What you will learn as you master the competency:

- a. Utilize derivatives to find global and local maxima and minima.
- b. Utilize derivatives to find inflection point.
- c. Maximize profit and revenue.
- d. Define and utilize elasticity of demand.
- e. Minimize average cost.
- f. Use the logistic function in application problems.

Performance Standards

You will demonstrate your competence:

- o on assigned activities
- o on written exams
- o on a two hour cumulative final exam

Your performance will be successful when:

- learner demonstrates the ability to use derivatives in solving application problems involving optimization and graphing
- learner demonstrates the ability to solve application problems involving the logistic and surge functions

5. Use the definite integral to solve application problems.

Learning objectives

What you will learn as you master the competency:

- a. Define and visualize the average value of a function.
- b. Define consumer and produce surplus using formulas.
- c. Interpret consumer and producer surplus graphically.
- d. Interpret present and future value.
- e. Interpret relative and absolute growth rates of population models.
- f. Use anti-derivatives to determine definite and indefinite integrals.

Performance Standards

You will demonstrate your competence:

- o on assigned activities
- on written exams
- o on a two hour cumulative final exam

Your performance will be successful when:

- learner demonstrates the ability to solve application problems including average value, consumer and produce surplus, present and future value and population growth
- learner demonstrates the ability to use anti-derivatives in finding definite and indefinite integrals through the Fundamental Theorem of Calculus

Types of Instruction

Classroom presentation

Grading Information

Grading Rationale

Each instructor has the flexibility to develop evaluative procedures within the following parameters.

- 1. Written exams must represent at least 60% of the final course grade.
- 2. Final exam must represent at least 20% of the final course grade.
- 3. Other activities may represent at most 20% of the final course grade.

Grading Scale

- A 90% 100%
- B 80% 89%
- C 70% 79%
- D 60% 69%
- F Below 60 %