Course Information
Division Mathematics
Course Number MAT 240 (SUN# MAT 2241)
Title Calculus III
Credits 4
Developed by Pedro Dabalsa
Lecture/Lab Ratio 3 Lecture /2 Lab
Transfer Status

<table>
<thead>
<tr>
<th></th>
<th>ASU</th>
<th>NAU</th>
<th>UA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 272, Mathematics (MA)</td>
<td>MAT 238</td>
<td>MATH 223</td>
<td></td>
</tr>
<tr>
<td>Note: Will fulfill MAT 267 requirement for Engineering Majors.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity Course No
CIP Code 27.0101
Assessment Mode Pre/Post Test (16 Questions/100 Points)
Semester Taught Fall
GE Category Mathematics
Separate Lab No
Awareness Course No
Intensive Writing Course No

Prerequisites
MAT 230 with a grade of "C" or higher

Educational Value
Students majoring in Mathematics, the Sciences, the Arts and Engineering

Description
Continuation of MAT 230. Vectors, geometry, differentiation, and integration in Euclidean n-space. Line and surface integrals. Theorems of Green, Gauss, and Stokes.

Supplies
Scientific calculator; TI-83 or TI-84 recommended
Competencies and Performance Standards

1. Represent plane curves parametrically.

 Learning objectives

 What you will learn as you master the competency:

 a. Construct a plane curve as a map from a subset of the real line into Euclidean 2- or 3-space.

 Performance Standards

 You will demonstrate your competence:

 o on assigned activities
 o on written exams
 o on a two hour cumulative exam

 Your performance will be successful when:

 o you can correctly construct curves in 2- and 3-space as maps defined on subsets of the real numbers

2. Define, understand, and use vectors in Euclidean 2- and 3-space.

 Learning objectives

 What you will learn as you master the competency:

 a. Use vectors in 2- and 3-space to model problems.

 Performance Standards

 You will demonstrate your competence:

 o on assigned activities
 o on written exams
 o on a two hour cumulative exam

 Your performance will be successful when:

 o you can model problems using vectors in 2- and 3-space

3. Define the derivative of a function of more than one real variable and demonstrate the correct use of the rules of partial differentiation.

 Learning objectives

 What you will learn as you master the competency:

 a. Write out the definitions of the partial derivatives of a function of more than one real variable.

 Performance Standards

 You will demonstrate your competence:

 o on assigned activities
 o on written exams
 o on a two hour cumulative exam

 Your performance will be successful when:

 o you can compute partial derivatives from the definition
4. Define the concept of continuity for functions of more than one real variable.

Learning objectives

What you will learn as you master the competency:

a. Determine the continuity of functions of more than one real variable.

Performance Standards

You will demonstrate your competence:

- on assigned activities
- on written exams
- on a two hour cumulative exam

Your performance will be successful when:

- you can write out the definition of continuity for a function of more than one real variable

5. Define, understand, and use the directional derivative in 2- and 3-space.

Learning objectives

What you will learn as you master the competency:

a. Compute directional derivatives and gradients for functions defined on Euclidean 2- and 3-space.

Performance Standards

You will demonstrate your competence:

- on assigned activities
- on written exams
- on a two hour cumulative exam

Your performance will be successful when:

- you can compute derivatives of functions of more than one real variable in arbitrarily specified directions

6. Understand the idea of extremum in two dimensions.

Learning objectives

What you will learn as you master the competency:

a. Solve extreme value problems in two-dimensional Euclidean space.

Performance Standards

You will demonstrate your competence:

- on assigned activities
- on written exams
- on a two hour cumulative exam

Your performance will be successful when:

- you can apply the fundamental theorem on extrema
7. Understand multiple integrals in various coordinate systems.
 Learning objectives
 What you will learn as you master the competency:
 a. Evaluate multiple integrals in various coordinate systems.
 Performance Standards
 You will demonstrate your competence:
 o on assigned activities
 o on written exams
 o on a two hour cumulative exam
 Your performance will be successful when:
 o you can evaluate multiple integrals in a variety of coordinate systems

8. Understand and apply the fundamental theorems of vector calculus in 2- and 3-space.
 Learning objectives
 What you will learn as you master the competency:
 a. Solve mathematical problems in 2- and 3-space.
 Performance Standards
 You will demonstrate your competence:
 o on assigned activities
 o on written exams
 o on a two hour cumulative exam
 Your performance will be successful when:
 o you can solve problems using vector calculus in more than one Euclidean dimension

Types of Instruction
Classroom Presentation

Grading Information

Grading Rationale
Each instructor has the flexibility to develop evaluative procedures within the following parameters.
1. Written Exams must represent at least 60% of the final course grade.
2. Final Exam must represent at least 20% of the final course grade.
3. The Post Test is to be embedded in the final exam and must represent at least 10% of the final course grade.
4. Other Activities may represent at most 20% of the final course grade.

Grading Scale
A 90%-100%
B 80%-89%
C 70%-79%
D 60%-69%
F Below 60%