Course Information
Division: Industrial Technology Education
Course Number: DRF 160
Title: Descriptive Geometry
Credits: 3
Developed by: Doug Griffin
Lecture/Lab Ratio: 1 Lecture/4 Lab
Transfer Status: MET Dept Elective CTE Departmental Elective Non Transferable

Activity Course: No
CIP Code: 15.1300
Assessment Mode: Pre/Post Test (40 Questions/40 Points)
Semester Taught: Fall
GE Category: None
Separate Lab: No
Awareness Course: No
Intensive Writing Course: No

Prerequisites
DRF 154 or concurrent enrollment in DRF 154

Educational Value
Course introduces any interested individual to the universal language of graphic communication and develops within the individual the ability to rationalize and visualize solutions to graphic problems.

Description
The study of lines, planes, successive auxiliary views, intersection of planes, angles between planes, developments, parallelism, perpendicularity, and the relationships between various geometric elements. All drawings will meet the ASME Y14.5M standard.

Supplies
None
Competencies and Performance Standards

1. **Demonstrate use of multi-view and auxiliary view drawings.**

 Learning objectives

 What you will learn as you master the competency:
 a. Identify terms relating to multi-view and auxiliary view drawings.
 b. Develop a multi-view drawing.
 c. Use fold lines and projection lines in development of multi-view drawings.
 d. Project geometry from one view to another.

 Performance Standards

 You will demonstrate your competence:
 o through course assignments and final exam

 Your performance will be successful when:
 o learner correctly projects geometric entities between multiple views on a drawing

2. **Derive the point view and true length of a line.**

 Learning objectives

 What you will learn as you master the competency:
 a. Define point view of a line.
 b. Define true length of a line.
 c. Demonstrate the use of true length lines and point view in a multi-view drawing.

 Performance Standards

 You will demonstrate your competence:
 o through course assignments and final exam

 Your performance will be successful when:
 o learner demonstrates proper use of point view and true length of a line in multi-view drawings

3. **Derive edge view and true shape of a plane.**

 Learning objectives

 What you will learn as you master the competency:
 a. Define edge view of a plane.
 b. Define true shape and size of a plane.
 c. Demonstrate use of edge view and true shape of a plane.

 Performance Standards

 You will demonstrate your competence:
 o through course assignments and final exam

 Your performance will be successful when:
 o learner correctly demonstrates use of edge view and true shape and size of a plane on multi-view drawings
4. **Demonstrate use of parallelism and perpendicularity.**

Learning objectives

What you will learn as you master the competency:

a. Define parallelism.
b. Define perpendicularity.
c. Demonstrate use of parallelism and perpendicularity in multi-view drawings.

Performance Standards

You will demonstrate your competence:

- through course assignments and final exam

Your performance will be successful when:

- learner demonstrates proper use of parallelism and perpendicularity on multi-view drawings

Types of Instruction

Classroom Presentation

Lab

Grading Information

Grading Rationale

Each instructor has the flexibility to develop evaluative procedures within the following parameters:

The Post Test will represent 10% of the course grade.

Course learning activities shall represent 90% of the course grade.

Grading Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% - 100%</td>
</tr>
<tr>
<td>B</td>
<td>80% - 89%</td>
</tr>
<tr>
<td>C</td>
<td>70% - 79%</td>
</tr>
<tr>
<td>D</td>
<td>60% - 69%</td>
</tr>
<tr>
<td>F</td>
<td>59% and lower</td>
</tr>
</tbody>
</table>